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Abstract

We establish sufficient conditions for permanence phenomena for a class of
spatially heterogeneous periodic—parabolic systems arising from ecological mod-
els. The conditions are expressed in quantifiable ways in terms of the spectra
of associated linear differential operators. In so doing, we connect asymptotic
coexistence in such a system to the underlying biological assumptions about the
model which are expressed in the parameters and coefficients of these operators.

1 Introduction.

In this article we are concerned with a class of reaction—diffusion models motivated
by population dynamics. Namely, we consider systems of the form

0

*“a%l = diAuy + uyfi(z, t, ug, uz)

0

S = dBuztuafae,tui,up) (1)
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in © x (0, 00), subject to the constraint

u1=0=u2 (2)

on 0 x (0,00). In (1)-(2), @ is a bounded domain in R"™ with sufficiently smooth
boundary ( say, of class C*** for some a > 0), and u;(z,t) represents the population
density of species 7 at location z € Q) and time ¢t > 0. We use the Laplace operator
A = 9%/9z2 + ... + 0%/0z2 to represent the random motion of the species within
2, with diffusion coefficients d; > 0 and dy > 0, respectively, and fi(z,?,uq,us) to
represent the per capita growth law for species ¢ at location z, time ¢ and densities
uy and ug, ¢ = 1,2. A salient feature is that we require

fi(z,t + T, wa, ug) = fi(z,t, w1, us) (3)

for some T' > 0, ¢ = 1,2, so as to idealize that the habitat and species interactions
are periodic in time.

The question regarding (1)—(2) of fundamental interest in population dynamics is
whether or not the model predicts the ultimate coexistence of species 1 and 2. These
models have no nonzero equilibria. Consequently, the notion of a globally attracting
(componentwise) positive equilibrium (a widely used mathematical prescription for
coexistence in autonomous systems; by globally attracting we mean with respect to
nonnegative, (componentwise) nontrivial initial data on ) does not obtain in this
situation. However, (1)-(2) may very well admit its natural analogue, a globally
attracting (componentwise) positive periodic orbit. In this circumstance, it is rea-
sonable to view the model as predicting the coexistence of the interacting species.
Moreover, in corresponding single-species propagation models, namely

%1:- = dAu + uf(z,t,u) (4)

in Q x (0,00) with u = 0 on 9 x (0, 00), there are very natural conditions on f that
guarantee the existence of a globally attracting positive periodic orbit. Specifically,
such an orbit exists (for appropriate values of d) if the per capita growth law is a
decreasing function of the density and is in fact negative for large enough values of the
density (uniformly in space and time). However, in the case of (1)—(2), such restric-
tions on fi(z,%,u1,0) and fao(z,t,0,us) are not sufficient to guarantee the existence
of a globally attracting (componentwise) positive periodic orbit for (1)—(2). Indeed,
identifying conditions on d; and f;(z,t, u1, uz) to guarantee such is a formidable task.
Moreover, for purposes of addressing the central population dynamical question, i.e.,
the asymptotic coexistence of the interacting species, having a globally attracting
(componentwise) positive periodic orbit is an overly strong requirement. All that is
really necessary is that trajectories to (1)-(2) emanating from nonnegative (compo-
nentwise) nontrivial data be eventually bounded away from (0,0) in an appropriate
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and uniform manner. Since both components of all trajectories vanish on the bound-
ary of {) for all positive time, a suitable notion of asymptotic coexistence is the exis-
tence of positive smooth functions U; and Us on } satisfying (2) and having negative
outer normal derivatives OU;/Ov on 0} so that for any initial data (ul(z),ud(z)) on
Q) with u?(m)%O, the corresponding trajectory (uq(z,t),us(z,t)) has u;(z,t) > Ui(z)
on § for all t > #o(u?, u3). This notion of asymptotic coexistence for (1)-(2) is usually
called uniform persistence. If, additionally, there are smooth functions V; and V; on
Q with U; < V; on Q such that u;(z,t) < Vi(z) on Q for all ¢ > to(ul, ud), (1)~(2) is
said to be permanent. In this article, we take permanence as our notion of asymptotic
coexistence, even though it is a seemingly stronger requirement than uniform persis-
tence, because the hypotheses we impose and the techniques we employ to obtain
uniform persistence simultaneously yield permanence.

A clarification is in order at this point. The formulation of permanence just given
is tailored to (1)—(2). However, in the mathematical literature, permanence is most
often viewed as a property that certain abstract dynamical systems possess. Conse-
quently, in order to utilize the literature, we must first cast (1)-(2) in a dynamical
systems framework. Since (1) is non—-autonomous, the trajectories of (1)-(2) do not
constitute a semi-flow (as do the trajectories for its autonomous analogue [4]). Con-
sequently, in order to cast (1)-(2) in a dynamical systems context, a modification in
the spirit of skew-product flows (see, for example [11]) is necessary. To this end, we
can follow the recent work of Zhao and Hutson [12] on permanence for (1) (supple-
mented by homogeneous Neumann boundary data). Once the notion of permanence
in the dynamical system framework is verified, it is of course necessary to show that
the permanence of (1)-(2) in the sense originally described follows.

In the special case that f; and f; describe competitive interactions, an alternate
approach to permanence, called compressibility, based on monotonicity, is available.
This approach is due to Hess and Lazer [8]. (See also [7].) Many interactions of
interest, for example, predation, are not suitably monotone, so that an alternate ap-
proach to permanence is needed in such cases. However, the results of [7] are posed in
terms of spectral properties of appropriate linear differential operators. (The discov-
ery by Lazer [10] of a principal eigenvalue for a periodic—parabolic linear differential
operator and its refinement by Hess and his collaborators (see the discussion in [7,
pp. 60-61]) is absolutely indispensible in this regard.) The approach we describe in
this article also expresses sufficient conditions for permanence in (1)-(2) in terms of
the spectra of linear differential operators associated with (1)-(2). In so doing, we
connect asymptotic coexistence in the system described by (1)-(2) to the underlying
biological assumptions expressed in the parameters of (1). Moreover, this connection
is explicitly quantifiable and may be used to make meaningful biological observations.
(See, for example [3], where such observations are made for the autonomous analogue
of (1)-(2).)

The remainder of this article is structured as follows. In Section 2, we set up
a framework for considering (1)—(2) as a suitable semi-dynamical system. To do



so, some initial assumptions are made on the per capita growth rate terms f;. At
this stage, we make explicit the definition of permanence in the dynamical systems
context and the criterion (the existence of a so—called “average Lyapunov functional”
— see [9]) we use to assert permanence. In Section 3, we establish permanence in the
dynamical systems context through the construction of an average Lyapunov function.
The verity of the construction is dependent upon spectral properties of certain linear
differential operators associated with (1)-(2). Consequently, the permanence results
of this section are formulated in a manner analogous to the compressibilty results in
[7], [8]; indeed, the results coincide when (1)—(2) represents a competitive interaction.
Finally, in Section 4, we show that permanence for (1)—(2) in the dynamical systems
context implies our original formulation of permanence for (1)-(2).

2 Dynamical systems framework.

We begin this section by establishing a suitable dynamical systems framework for the
discussion of permanence for (1)—(2). Our development follows [4] and [12] closely.
Consequently, keeping in mind the space constraints on this article, we present here
only the barest possible outline and refer the interested reader to [1], [4] and [12] and
the references therein for more detail.

Let us assume:

(H1) Q € R™is a bounded domain, with boundary 9§ uniformly of class C3*2.
(H2) Condition (3).
(H3) fi(z,t,u1,uz) is C® in all its arguments, 1 = 1, 2.

Under these assumptions, (1)~(2), supplemented by the initial condition u;(z,%to) =
U;(z) for = € £}, where ¢y > 0, can be reformulated as the initial value problem

t+ Au = F(t,u(t))
u(te) = @ (5)

in the space [CO(2)]?, where u = (u1,u2) and @ = (%, @2), A is the infinitesimal gen-

erator of a semi—group derived from “Cf)lA C(l) A ) ,and F : [0,00) x [C3(R)]? —
—dy
[C2(Q)]? is given by
F(tv u) = (U1($)f1(37, ta Uz, u2)7 U2($)f2($, ta Uy, UZ)) (6)

Moreover, for any @ € [CJ(R2)]? and %o > 0, (5) admits a unique solution ¢(,to,t) on
a maximal interval [to, 8(, o)) so that ¢(i,to,t0) = U, #(4,1o,1) is a classical solution
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of (1)-(2) on (to, B(@,10)) and if B(@, o) < oo, tllglo Hd)(ﬁ,to,t)[l[cg(ﬁ)]z = o0o. That such
is the case follows as in [4] and [12] and the references there in. Additionally, it follows
from [6, p.61 ] that if the components of % are nonnegative, so are those of ¢(&, to,t).
(Our Hypothesis (H3) is stronger than is absolutely necessary. However, it is a clean
and easily understood conditon sufficient for our purposes here. For a more precise
accounting, see [1].)

Now assume additionally:

(H4) For any a > 0, there is a B(a) > 0 so that if u € [CJ(2)]2 and llullco@ye <
a, |[¢(u, 7, )|l jca@p < Bla) forall T > 0 and ¢ > 7.

(H5) There is a B > 0 so that if u € [CJ(©)]2 and 7 > 0, there corresponds
to = to(u, ) so that [[¢(u, 7, )|lco@ye < B for ¢ = to.

Here [CJ(f2)]2. denotes the positive cone of [CJ(£2)]%; i.e., those elements whose com-
ponents are nonnegative. It follows from (H4) that ¢(u, 7,t) exists on [7, co) for any
u € [C3(Q)]3. Now, let 7 > 0 be given, and consider

ous _

5 diAu; + u; fi(z, t + 7, up, ug) (7)

in 2 x (0,00), subject to
ui(z,t4+7)=0 (8)

on 90 x (0,00), 1 =1,2. Let Fr(t,u) = F(t + 7,u) where F is as in (6), and denote
by ¢(u, F;,t) the unique solution to (7)—-(8) such that ¢(u, F,,0) = u. It follows as
in [12] that ¢(u,7,t) = @(u, Fr,t —7) for t > 7.

We may now formulate (1)-(2) as a semi~dynamical system. Let S* = {P, | 7 €
Ry}, where P, = e2™/T. Then [CQ(R)]2 x S admits the metric

2n(T — s
(0P ) = o= ol + 1 -0 (2572)
under which it is complete. Define 7 : [Cg(ﬁ)]i X ST xRy — [Cg(ﬁ)]i x S by
w(u, Pryt) = (¢(u, 7,7 +1), Prys)

= (QD(U, F.,-, t), P’T-H)-



Then, as in [12], 7 is a semi—flow. Modifying the arguments in [4] slightly so as to take
into account the S* component of the semi-flow, we see that «(.,t) : [CJ(Q)]Z x ST —
[C3(Q)]2 x S is compact for any t > 0 and that there is a nonempty bounded set
U € [Co())2 x St so that for any (u,P;) € [CY(QZL x S, 7(u, Py,t) € U for all
t > to = to(u, P;). This last property is called point dissipativity. Since 7 is point
dissipative and =(.,t) is compact for ¢ > 0, a result of Bilotti and Lasalle [2] (cf.
[5]) guarantees the existence of a compact set A in [CJ(R)]2 x S* invariant under
7 so that lim d(n(u, Pr,t),A) = 0 for any (u, P;) € [CH(Q)]2 x S, i.e. a global
attractor. As observed in [4], the regularity theory of parabolic differential equations
allows us (under the same assumptions (H1)—(H5)) to view 7 as a semi-flow on the
space [C3(Q)]2 x S'. w is point dissipative and compact for ¢ > 0 fixed, relative to
[C3())2 x S. Consequently, there is a global attractor for m in [C3(R2)]2 x S*, which
we again call A. If we now let X = n(B(A4,¢), [to,0)), where B(A,¢€) is an open
neighborhood of A in [C3()]2 x S* and to > 0 is arbitrary, we find as in [4] that X
is compact and positively invariant. (It is worth noting at this point that we work in
[C3()]% x S* primarily to benefit from the fact that the positive cone in [CE()]?
has a nonempty interior, whereas the positive cone in [C2(Q2)]? does not. In the case
of (1) supplemented by homogeneous Neumann boundary data, as in [12], such an
adjustment is unnecessary, since the positive cone in [C°(2)]? has nonempty interior.)
The upshot of the preceding observations is that all the interesting dynamics for
7 occur in X. Let ¢’ > 0 be fixed and consider X = 7(X,#). Then X is compact and
positively invariant. Moreover, we may express X as X = (X N {int[C3 (]2 x Sl})U
(X N {A[C3()2 x Sl}) . It follows from the parabolic maximum principle and the
definition of X that X N {int[CZ(?)]2 x S} and X N {A[CL(N)]2 x S} are positively
invariant. Let S = XN{9[C3(M]2xS'} = Xﬂa{[Cl(“)] x S'}. Then if (u,P;) € S
and u = (u1,uz) either uy = 0 or u; = 0. We say that = is permanent provided there

is a subset U of X — S so that ( m)f d((u,P,;),S) > 0 and hmd(ﬂ'(u P,,1),0)=0
u,Pr

for all (u, P;) in X — S, where d is the metric in [C3(02)]? x S.

There are several ways to determine that 7 is permanent. We shall use the follow-
ing criterion, usually referred to as the method of an average Lyapunov functional.
For more background on this approach, see [9].

Theorem 2.1 Suppose that =, X and S are described as above. Suppose that p :
X — 8 — Ry is continous, strictly positive, and bounded, and for (u,P;) € S define

a(t,(u, P,)) = limint (M) .

e =i\ p((v, F))
Then © is permanent if
1 (u, P;) € w(S)
sup at, (w, Fr)) > { 0 (wP)eS,



where w(S) denotes the w-limit set of S.

To complete the reformulation of (1)—(2) in a dynamical systems context, we need
to give conditions on fi(z,t,u,u2), ¢ = 1,2, under which (H4) and (H5) hold.
The following sufficient conditions hold in situations in which both species exhibit a
self-regulation mechanism, and include many instances of predation and competition.
The sufficiency of the conditions (for guaranteeing (H4) and (H5) ) may be verified
using sub- and super—solutions techniques and comparison principles as in [4].

Theorem 2.2 Suppose there exists a Lipschtiz function Fy(t,uq) which is T—periodic
in t so that

sup{ fi(z,t,u1,u2) | ¢ € Q, ug > 0} < Fy(t,u1) (9)
and there exist a > 0 and My > 0 so that

Fi(t,u1) < —a if ug 2 Mo. (10)

Then if (u1,us2) is a solution of (1)-(2) for t € (0, R] with nonnegative initial data,
then 0 < uy <y on (0, R| where y satisfies

du . —

= =¥ Y) 5 y(0) = yo 2 sup{u(2,0) | = € 0}
Moreover, if My > My and (uq,uz) is a solution to (1)—(2) for all time t > 0, then
Cuy < My for t sufficiently large, and if ui(z,0) < My, then uy < My for all t > 0.

Theorem 2.3 Suppose that f, satisfies the hypotheses of Theorem 2.2 and that for
any M > 0 there exist a Lipschitz function Fy(t,us, M) which is T -periodic in t so
that

sup{fa(z,t,us,uz) |z € 0, 0 <wy < M} < Fy(t,uz, M) (11)
fort € [0,T] and constants Ma(M) > 0 and a(M) > 0 so that

Fr(t,u, M) < —a(M) if ug > Ma(M) (12)

Then solutions to (1)-(2) corresponding to componentwise nonnegative initial data
exist for all t > 0. Moreover, if My is as in Theorem 2.2 and Mz > My(M,), us < M3
for t sufficiently large, and if ui(z,0) < My and uqy(z,0) < Ms, then ui(z,t) < My
and uz(z,t) < Ms for all t > 0.



3 Average Lyapunov functional.

We now employ Theorem 2.1 to assert that 7 is permanent. We see from the statement
of Theorem 2.1 that we need to know w(S). It follows from the definition of S that
we need to determine the asymptotic behavior of solutions when one of the species is
extinct. To this end, consider

%zti = dAu+uf(z,t,u) inQ x (0,00)
u = 0 on 9% x (0, 00) (13)

where f is T—periodic in ¢ and satisfies

(L1) fis C? in all arguments.

(L2) f(z,t,v) > f(z,t,u) if 0 < v < u.

(L3) f(z,t,u) <0if u> K for some K > 0.

By [8](cf. [7]) the linear eigenvalue problem

%?ti—dAv—f(m,t,O)v::uv in QxR
v=20 on O} xR
v(z,t+T)=v(z,t) in QXR (14)

admits a unique u € R having associated eigenfunction v € C***+%(QY x [0,T))
with v(z,t) > 0 for z € Q and t € R. We have the following result.

Theorem 3.1 Consider (18) and suppose that f is T-periodic in t and satisfies
(L1)—(L3). Then (13) admits a positive T'—periodic solution u(z,t) if and only if
g in (14) is negative. Additionally:

(i) If p < 0, u is the only such solution. Moreover, if w(z) € C*(Q) with w;O and
Uy denotes the solution of (13) with u,(z,0) = w(z), and if € > 0 is given, there
is to = to(w) so that |lu(z,t) — uw(@,?)||;a@y < € for all t > to (i.e., u is globally
asymptotically stable with respect to nonnegative initial data).

(i) If u > 0, 0 is globally asymptotically stable with respect to nonnegative initial
data.

Proof: The special case when f(z,t,u) = m(z,t)—b(z,t)u and b(z,t) > 0 on 0 x[0, 7]
is given in Theorem 28.1 of [7]. Properties (L2) and (L3) are the essential features
of m(z,t) — b(z,t)u needed in the proof. Consequently, it is relatively easy to adapt
the proof there to the general situation and we leave this to the interested reader.
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Theorem 3.1 enables us to determine w(S). (u, P;) € S implies that u = (uy,0)
or (0,uz). Consequently, Theorem 3.1 implies that if (u,P;) € w(S), (u,P;) €
{(0,0, P;), (ui(.,7),0,P;), (0,uk(.,7), P:)} , where u} is the unique globally attract-
ing positive T'—periodic solution of

%% =d1 Ay + ui fi(z,t,u1,0) in QX (0, 00)
uy =0 on 9 x (0,00) (15)
and uj is the unique globally attracting T-periodic solution of
0
““gt‘z‘ = dzAUz + szg((l),t, O, ’U,z) in Qx (0, OO)
uy =0 on d90 x (0,00) (16)

should either exist. Now assume

(N1) For i = 1,2, d = d; and f(z,t,0) = fi(z,t,0,0) are such that 4 = 7; < 0 in
(14).

Let ui(z,t) = uf = uj(@y) and ui(z,t) = uj = u(@z) denote the unique positive T—
periodic solutions of (15) and (16) respectively. Let g1(z,t) = fi(z,?,0,u3(z,t)) and
g2(z,t) = fa(z,t,ui(z,t),0). Then g; € C**1+5(Q) x [0,T]) and there is a unique
fi; € R so that

% — d;Av — gi(z,t)v = pv in xR
v=0 on 00 xR
v(z,t+T)=v(z,t) in QXR (17%)
and
— %—7::- — diAw — gi(z,t)w = pw in QxR
w=0 on Of) xR
w(z,t+T)=w(z,t) in QxR (187)

admit solutions %;(z,t) > 0 and ¥¥(z,t) > 0 in Q X R, respectively, 7 = 1,2 [10].
(Note that (18) is the adjoint equation to (17).) Assume

(N2) For i =1,2, d; and g;(z,t) are such that i; < 0 in (17) (or in (18)).
We may now state our main result.

Theorem 3.2 Assume (H1)—(H5) and that fi(z,t,u1,0) and fa(z,t,0,us) satisfy
(L2)—(L3). Then if fi(z,t,0,0) > fo(z,t,0,us) foruz > 0 and (N1) and (N2) hold,
T 15 permanent.



Proof: We employ Theorem 2.1. To that end, let X and S be as in Section 2, and
define p: X — S — Ry by

(o, ) = ([ et nie)” ([ welistenae)”  (10)

where % is a normalized eigenfunction for (18) with ¥¥(z,t) > 0in Q X R, 7 = 1,2,
and §; > 0 is a positive constant to be determined, ¢ = 1,2. The right hand side of
(19) may be written

exp [,81 log/ v1(z)Yi(z, 7)dz + Bo log/ va(z)5(z, T)dm] (20)
Q Q
For (uy,us, Py,) € S, define
_ _— p(m((v1,v2, Pr), 1))
Of(t') ('urla Uz, P’ro)) - (ul,uZ,}%];]il-.(l&f;z,Pro) ( P((U1, Vs, P’r)) .

(vy ,uz,PT)E)-(—S

If sup a(t, (u1,us, Pry)) > 0 for (uy,uq, Pp) € S and sup et (u1, ug, Ppy)) > 1 for
>0 £>0
(u1, U2, Pry) € w(S), Theorem 2.1 implies that 7 is permanent.

By (20), we have

p(m((vy,va, Pr), 1)) _ p(vi(z, 1), va(z, t), Prois)
p((v1,v2, Pr)) p((vi(z), v2(), Fr))

= oxp { Billog [ vi(a, Opi(e, +t)do — log [ 01(z,0bi(z, 7)dal.

+ ﬂz[logfg vo(z, )3 (z, T+ t)dz — Iog/sz(m,O)zb;(m,T)dm]}

_ t (L fovi(z,s)pi(e, 7+ s)dz
- {IBI /0 (deXZn(.’B, 8)1,/){(13:, T+ 8)dz ) ds +

d
t( i Java(z, s)p3(e, 7 + s)cl:c) }
o /0 ( Jo va(z, )3 (2, 7 + s)da ds

_ 2, 1t Ja([(Bvi/8s)(, )]9; (2, 7 + 5) + vi(w, 5) (93 /0s)(z, 7 + 5)dx
= exp {Z ﬂz/o ( Q T ol s 0 (or 1 2)da ) ds} .

=1

But now

/Q[%?-;—l—(:c, )i (z, 7+ s) + vi(z, s)%éi(w, T+ 8)|dz
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= /Q[dlAvl(x, s) + vi(z, 8) fi(z, 7 + s,v1(z, 8), va(z, 8))]1(z, 7 + s)dz —

Joa(e, B AW @7+ 9)+ e, + 5,0, 050, 7 + )il 7 + 5) + (e, 7+ 5)lda

= ‘/Qvl(a:,s)zb;(w, T+ 8)[fi(z, T + s,v1(z, 8), v2(z, 8)) — fi(z, 7+ 5,0,uz(z, 7 + 5)) — palde

and analogously for 7 = 2. So

(01,03, Pr)) _

e+ 1A (2,5), va(2,) — (0,7 + )
Jo vi(z, $)i(z, 7 + 8)[fi(z, T + s,v1(z, 8), va(z, 8 filz, 7+ s,0,ul(z, 7+ s

expln [ Jo (e, )i (e, 7 + 9)da

B p]dz
Jovi(z,s)i(z, 7+ s)dz

Ja va(z, 8)P5(z, 7 + s)[fo(z, T + 5, v1(2, 8), va(g, 5)) — falz, T + 5, uf(z, T + 5),0)
+h2 /( Jqva(z, 8)vi(z, 7 + s)dz

)ds

poldz
- d
fQ ’02(3}, S)’(/);(:C, T+ S)dw) S}
It follows from the compactness of X and the properties of f; and f, that, for example,

f(z, 7+ s,vi(=, 8),ve(z, 8)) — fi(z, 7 + 8,0,ud(z, 7 + 8)) — g1 is uniformly bounded
below in z, 7 and s. Consequently, sup a(t, u1, uz, Pry) > 0 for any (u1,uq, Pry) € S
>0

for any fixed choice of ; > 0 and f; > 0. To see that sup a(t,uy,ug, Pry) > 1
£>0

for any (u1,uq, Pry) € w(S), recall that (u1,us, Pr,) € w(S) implies (uy,uq, Pry) €
{(0,0,70), (ui(.,70),0, Pr), (0,u3(., 70), Pry)}. If v1(z,8) — 0, va(z,s) — 0 and 7 —
T, Fo(, 7+ 8 01(2, 5), 038 8)) 0,74 5,0, 37 +8)) — 1 — Fu(zy 70+ 5,0,0)—
fl(m,70+3)07u§($17-0+3)) — 2 —H1 since fl($770+5>030) “f1($77-0+3)u;($77-0+
s)) > 0. Additionally, fo(z, 7+ s,v1(z, ), va(z, 8)) — fa(z, 7+ s, ui(z, 7+ 5),0) — o —
fa(z, 70+ 8,0,0) — fo(z, 70+ 35, uj(z, 70+ ), 0) — po. If we choose By > 0 and B, > 0 so
that Bi(—p1) + Ba(—p2) + B (i;atf)[fg(w,t,0,0) — fa(,t,ui(z,1),0)] > Bs > 0 it follows
that sup «(¢,0,0, P;,) > 1, independent of 7. If vi(z,s) — uj(z, 70 + 3), v2(z,8) — 0
>0
and 7 — 79, observe that

[ (oo,
fQ ’U](.’I), 3)¢T(w7 T+ S)dw

= log/Qvl(a:,t)v,b’f(x, T+ t)dz — log/Qvl(:L', 0)y1(z,7)dz

— log] /Q (@, 70+ )Xz, 7o + t)da/ /Q ur(, o) (2, o) d]

11



On the other hand, fo(z, 7 + s,v1(=, s), va(z, 8)) — fo(z, 7 + s, ui(z, 7+ 3),0) — pg —
Jo(z, 70 + s, ui(z, 0+ 5),0) — fo(z, 70 + s, ui(z, 70 + 8),0) — p2 = —pia.
Consequently,

Joui(z, 70+ T)Y5(z, 70+ T)dz
: Jo Ul(fB,To)%b’lf(iU,To)dw ] ’ ﬂz(——M)T}

a(T, (ui(.,7),0, Pr)) = exp {[31 log [

= exp fp(—p2)T > 1

So sup a(t, (u3(.,70),0, Prp)) > 1 for any B, > 0, independent of 7. Since y; < 0,
>0
an analogous argument shows that sup a(t, (0,u5(.,70), Pr,)) > 1 for any f1 > 0,
>0

independent of 75. Consequently, Theorem 2.1 implies that 7 is permanent.

4 Permanence of 7 implies permanence.

We complete our discussion by showing that if the semiflow 7 is permanent according
to the definition in Section 2, then (1)-(2) is permanent in the sense described in
the Introduction. Namely, there are smooth functions U; < V; on Q, ¢ = 1,2, with
U; > 0in Q and 9U;/0v < 0 on 09, so that if (uy(z,t),us(z,t)) is a solution to
(1)-(2) with u,-(:c,O):éO for ¢ = 1,2, there corresponds to = to(u1(z,0), us(z,0)) > 0
so that U; < ui(z,t) < V; for all t > ¢o. It follows readily from the dissipativity of
that any sufficiently large positive constant is a suitable choice for V;. To obtain U;,
we establish the following result. In what follows e(z) is the unique function solving

—A¢p=1 on 00
$=0 on 0Q. (21)

Theorem 4.1 Suppose that the semiflow « : [C3(Q))2 x S* x Ry — [CFO))2 x S*
induced by (1)-(2) is permanent. Then there exists @ > 0 so that for any so-
lution to (1)-(2) (u1(z,t),us(z,t)) with u,—(:c,O);O for ¢ = 1,2 there corresponds
to = to(u1(z,0),us(z,0)) > 0 so that

ui(z,t) > ae(z) on Q
(22)

Oui <a66_(:n) on 0 (23)

Ov Ov
for all t > tg, 1 =1,2.

Remark: By (21) and the strong maximum principle, e(z) > 0 in 2 and Je/0v < —v
on 0f), where v > 0 is constant. It follows from (22) that an appropriate choice for
Ui(z), 1= 1,2, is ae(z).

12



P'roof Let A, X, S and U be as in Section 2. It follows from the definition of U that

U NS =0 and from the permanence of = that A C TuUS. Let A=ANT. Then A

is a compact invariant set for 7. Moreover, since ( mf d((u, P;),S) > 0, it follows
u, P, r eU

from [5] that Jlim ( sup d(w(u,Py,t), .A)) = 0. As a result, since the inequalities
(u,Pr)el

in (22) determine an open set in Cj (R) , we need only establish (22) for u € [CI(Q)]
with the property that (u, P,) € A for some 7 € R. For such a u, there is (v, P,,) € A,
with 71 < 7, so that = (v, Py, 7 — 71) = (p(v, Fr,,7 — 1), Pr) = (u, P;). The strong
maximum principle implies that u;(z) > 0 in Q and Ju;(z)/0v < 0 on 99, i = 1,2,
where u = (uy,uz2). It now follows that there is a(u) > 0 so that u;(z) > a(u)e(z) in
Q and Quy(z)/0v < o(u)de(x)/Ov on 0N, i = 1,2. The compactness of A shows that
(22) holds for u with (u, P;) € A for some 7 and the proof is complete.
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